Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.561
Filtrar
1.
Histol Histopathol ; 38(11): 1239-1248, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37170703

RESUMO

Plexins are a large family of single-pass transmembrane proteins that mediate semaphorin signaling in multiple systems. Plexins were originally characterized for their role modulating cytoskeletal activity to regulate axon guidance during nervous system development. Thereafter, different semaphorin-plexin complexes were identified in the nervous system that have diverse functions in neurons, astrocytes, glia, oligodendrocytes, and brain derived-tumor cells, providing unexpected but meaningful insights into the biological activities of this protein family. Here, we review the overall structure and relevant downstream signaling cascades of plexins. We consider the current knowledge regarding the function of semaphorin-plexin cascades in the nervous system, including the most recent data regarding their roles in neuronal development, neuroinflammation, and glioma.


Assuntos
Moléculas de Adesão Celular , Sistema Nervoso , Semaforinas , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Semaforinas/química , Semaforinas/metabolismo
2.
Biol Psychiatry ; 93(11): 989-999, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35094880

RESUMO

BACKGROUND: Patients with obsessive-compulsive disorder (OCD) display disrupted performance and abnormal lateral orbitofrontal cortex (LOFC) activity during reversal learning tasks. However, it is unknown whether compulsions and reversal learning deficits share a common neural substrate. To answer this question, we measured neural activity with in vivo calcium imaging in LOFC during compulsive grooming and reversal learning before and after fluoxetine treatment. METHODS: Sapap3 knockout (KO) mice were used as a model for OCD-relevant behaviors. Sapap3 KOs and control littermates were injected with a virus encoding GCaMP6f and implanted with gradient-index lenses to visualize LOFC activity using miniature microscopes. Grooming, reversal learning, and neural activity were measured pre- and post-fluoxetine treatment (18 mg/kg, 4 weeks). RESULTS: Baseline compulsive grooming and reversal learning impairments in KOs improved after fluoxetine treatment. In addition, KOs displayed distinct patterns of abnormal LOFC activity during grooming and reversal learning, both of which normalized after fluoxetine. Finally, reversal learning-associated neurons were distributed randomly among grooming-associated neurons (i.e., overlap is what would be expected by chance). CONCLUSIONS: In OCD, LOFC is disrupted during both compulsive behaviors and reversal learning, but whether these behaviors share common neural underpinnings is unknown. We found that LOFC plays distinct roles in compulsive grooming and impaired reversal learning and their improvement with fluoxetine. These findings suggest that LOFC plays separate roles in pathophysiology and treatment of different perseverative behaviors in OCD.


Assuntos
Fluoxetina , Transtorno Obsessivo-Compulsivo , Camundongos , Animais , Fluoxetina/farmacologia , Reversão de Aprendizagem/fisiologia , Asseio Animal , Córtex Pré-Frontal , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(40): e2203783119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161901

RESUMO

ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Replicação do DNA , Proteínas do Tecido Nervoso , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(38): e2204229119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095217

RESUMO

Forgetting is an essential component of the brain's memory management system, providing a balance to memory formation processes by removing unused or unwanted memories, or by suppressing their expression. However, the molecular, cellular, and circuit mechanisms underlying forgetting are poorly understood. Here we show that the memory suppressor gene, sickie, functions in a single dopamine neuron (DAn) by supporting the process of active forgetting in Drosophila. RNAi knockdown (KD) of sickie impairs forgetting by reducing the Ca2+ influx and DA release from the DAn that promotes forgetting. Coimmunoprecipitation/mass spectrometry analyses identified cytoskeletal and presynaptic active zone (AZ) proteins as candidates that physically interact with Sickie, and a focused RNAi screen of the candidates showed that Bruchpilot (Brp)-a presynaptic AZ protein that regulates calcium channel clustering and neurotransmitter release-impairs active forgetting like sickie KD. In addition, overexpression of brp rescued the impaired forgetting of sickie KD, providing evidence that they function in the same process. Moreover, we show that sickie KD in the DAn reduces the abundance and size of AZ markers but increases their number, suggesting that Sickie controls DAn activity for forgetting by modulating the presynaptic AZ structure. Our results identify a molecular and circuit mechanism for normal levels of active forgetting and reveal a surprising role of Sickie in maintaining presynaptic AZ structure for neurotransmitter release.


Assuntos
Dopamina , Proteínas de Drosophila , Drosophila melanogaster , Memória , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica
5.
Proc Natl Acad Sci U S A ; 119(15): e2201071119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377802

RESUMO

The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas do Tecido Nervoso , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/metabolismo , Metamorfose Biológica/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Pupa/genética , Pupa/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163698

RESUMO

Collagens are the most abundant proteins in vertebrates and constitute the major components of the extracellular matrix. Collagens play an important and multifaceted role in the development and functioning of the nervous system and undergo structural remodeling and quantitative modifications during aging. Here, we investigated the age-dependent regulation of col4a1 and col25a1 in the brain of the short-lived vertebrate Nothobranchius furzeri, a powerful model organism for aging research due to its natural fast-aging process and further characterized typical hallmarks of brain aging in this species. We showed that col4a1 and col25a1 are relatively well conserved during vertebrate evolution, and their expression significantly increases in the brain of N. furzeri upon aging. Noteworthy, we report that both col4a1 and col25a1 are expressed in cells with a neuronal phenotype, unlike what has already been documented in mammalian brain, in which only col25a1 is considered a neuronal marker, whereas col4a1 seems to be expressed only in endothelial cells. Overall, our findings encourage further investigation on the role of col4a1 and col25a1 in the biology of the vertebrate brain as well as the onset of aging and neurodegenerative diseases.


Assuntos
Envelhecimento , Encéfalo/fisiologia , Colágeno Tipo IV/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/metabolismo , Ciprinodontiformes/metabolismo , Ciprinodontiformes/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Fenótipo
7.
Dis Markers ; 2022: 8339759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186168

RESUMO

BACKGROUND: There is still a lack of knowledge regarding the association between hypertension and ferroptosis. A single-cell approach was used to study the changes in neuropeptide expression as they might contribute to the mechanisms leading to ferroptosis in a hypertensive microenvironment. METHODS: We analyzed 11798 cells from the SHR group and 12589 cells from the WKY group of mouse arterial cells. CellPhoneDB was used for cell communication analysis, and the SCENIC method was used to identify key transcription factors in neurons. The correlation between Ntrk2 and ferroptosis-related genes was further analyzed and validated via quantitative polymerase chain reaction. RESULTS: The arterial cells were clustered into six cell types. Ligand-receptor analysis suggested that Ngf, Ntf3, Cxcr4, and Ntrk2 were key neuropeptide-related genes involved in the communication between vascular smooth muscle cells and neural cells. In the hypertensive microenvironment, the neuronal transcription factor Creb3l1 appears to play a key role in the upregulation of Ntrk2 to promote the interaction between neurons and vascular smooth muscle cells. An association between Ntrk2 and the ferroptosis death inhibitor Gpx4 was suggested. RT-qPCR experiments confirmed that Ntrk2 downregulation in neural cells was followed by downregulated expression of Gpx4. CONCLUSIONS: Creb3l1, a key transcription factor in vascular neurons, may upregulate Ntrk2 to promote vascular smooth muscle cell-neuron interaction and thereby potentially prevent ferroptosis in neurons.


Assuntos
Biologia Computacional , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Ferroptose , Hipertensão/genética , Músculo Liso Vascular/citologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptor trkB/fisiologia , Regulação para Cima , Animais , Sequência de Bases , Comunicação Celular , Camundongos , Análise de Célula Única
8.
J Clin Lab Anal ; 36(2): e24196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997978

RESUMO

BACKGROUND: Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein associated with seizures, dyskinesia, and intelligence deficit. Previous studies indicate that PRRT2 regulates neurotransmitter release from presynaptic membranes. However, PRRT2 can also bind AMPA-type glutamate receptors (AMPARs), but its postsynaptic functions remain unclear. METHODS AND RESULTS: Whole-exome sequencing used to diagnose a patient with mental retardation identified a nonsense mutation in the PRRT2 gene (c.649C>T; p.R217X). To understand the pathology of the mutant, we cloned mouse Prrt2 cDNA and inserted a premature stop mutation at Arg223, the corresponding site of Arg217 in human PRRT2. In mouse hippocampal tissues, Prrt2 interacted with GluA1/A2 AMPAR heteromers but not GluA2/A3s, via binding to GluA1. Additionally, Prrt2 suppressed GluA1 expression and localization on cell membranes of HEK 293T cells. However, when Prrt2 was overexpressed in individual hippocampal neurons using in utero electroporation, AMPAR-mediated synaptic transmission was unaffected. Deletion of Prrt2 with the CRIPR/Cas9 technique did not affect AMPAR-mediated synaptic transmission. Furthermore, deletion or overexpression of Prrt2 did not affect GluA1 expression and distribution in primary neuronal culture. CONCLUSIONS: The postsynaptic functions of Prrt2 demonstrate that Prrt2 specifically interacts with the AMPAR subunit GluA1 but does not regulate AMPAR-mediated synaptic transmission. Therefore, our study experimentally excluded a postsynaptic regulatory mechanism of Prrt2. The pathology of PRRT2 variants in humans likely originates from defects in neurotransmitter release from the presynaptic membrane as suggested by recent studies.


Assuntos
Deficiência Intelectual/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Adolescente , Animais , Códon sem Sentido , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Linhagem , Sequenciamento do Exoma
9.
PLoS Genet ; 18(1): e1009928, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100262

RESUMO

Intermediate neural progenitors (INPs) boost the number and diversity of neurons generated from neural stem cells (NSCs) by undergoing transient proliferation. In the developing Drosophila brains, INPs are generated from type II neuroblasts (NBs). In order to maintain type II NB identity and their capability to produce INPs, the proneural protein Asense (Ase) needs to be silenced by the Ets transcription factor pointed P1 (PntP1), a master regulator of type II NB development. However, the molecular mechanisms underlying the PntP1-mediated suppression of Ase is still unclear. In this study, we utilized genetic and molecular approaches to determine the transcriptional property of PntP1 and identify the direct downstream effector of PntP1 and the cis-DNA elements that mediate the suppression of ase. Our results demonstrate that PntP1 directly activates the expression of the transcriptional repressor, Tailless (Tll), by binding to seven Ets-binding sites, and Tll in turn suppresses the expression of Ase in type II NBs by binding to two hexameric core half-site motifs. We further show that Tll provides positive feedback to maintain the expression of PntP1 and the identity of type II NBs. Thus, our study identifies a novel direct target of PntP1 and reveals mechanistic details of the specification and maintenance of the type II NB identity by PntP1.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/genética , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transgenes
10.
Biochem Biophys Res Commun ; 593: 137-143, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35066403

RESUMO

Depression, characterized by low mood, is a complex mental disorder that is a serious threat to human health. Depression is thought to be caused by a combination of genetic, environmental and psychological factors. However, the pathophysiology of depression remains unclear. In the present study, we found that Dcf1 knockout (KO) mice had depression-like symptoms and disruptive changes in gamma-aminobutyric acid (GABA) concentration and GABA receptor expression were found in the hippocampus of Dcf1 KO and WT mice. Furthermore, the gut microbiota composition of Dcf1 KO mice was significantly different from that of wildtype (WT) mice and Dcf1 KO mice showed lower Firmicutes and Lactobacillus content compared to WT mice. In addition, the depression-like behavior of Dcf1 KO mice was alleviated by the administration of microbiota. More surprisingly, after treatment with Lactobacillus murine and Lactobacillus reuteri, two Lactobacillus species with proportionally greater differences in content between the WT and KO groups, KO mice showed similar GABA content, as well as restored GABA-related receptor expression, as the WT group. Our data elucidated a possible mechanism of depression induction by gut microbiota in Dcf1 KO mice and provide a new avenue to explore the treatment of depression by gut microbiota.


Assuntos
Depressão/terapia , Microbioma Gastrointestinal , Intestinos/transplante , Lactobacillus/fisiologia , Limosilactobacillus reuteri/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Probióticos/administração & dosagem , Animais , Depressão/etiologia , Depressão/metabolismo , Depressão/patologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Inflamm Res ; 71(2): 243-253, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059772

RESUMO

OBJECTIVE: Inflammation and proliferation of vascular smooth muscle cells (VSMCs), induced by angiotensin II (AngII) and other growth factors, play important roles in the pathogenesis of hypertension, restenosis, and atherosclerosis. Dihydroartemisinin (DHA) exhibits broad protective effects. However, the effects of DHA on AngII-induced inflammation and proliferation of VSMCs remain unknown. MATERIALS AND METHODS: AngII was used to construct VSMCs and vascular inflammation model in vitro and in vivo. The protective roles of DHA in inflammatory response and proliferation were evaluated through CCK-8, BrdU assay and immunofluorescence staining. The level of mRNA N6-methyladenosine was measured by m6A-RNA immunoprecipitation (MeRIP) assay. Western blot and quantitative real-time PCR were used to investigate the relationship between FTO and its potential downstream signaling molecules. RESULTS: In the present study, we found that DHA significantly suppressed AngII-induced proliferation of VSMCs and the expression of IL-6 and Ccl2 in a dose-dependent manner. Additionally, we confirmed that fat mass and obesity-associated (FTO) plays a critical role in AngII-induced VSMC proliferation and inflammation. FTO knockdown increased the methylation level of NR4A3 mRNA, whereas FTO, but not mutated FTO overexpression, reduced the methylation level of NR4A3 mRNA. These results suggest that DHA plays a protective role in AngII-induced VSMC proliferation and the associated inflammation by inhibiting the FTO/NR4A3 axis. CONCLUSION: Our findings provide new insight into the mechanisms of DHA and its critical role in the pathogenesis of hypertension-related vascular complications.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Angiotensina II/farmacologia , Artemisininas/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Inflamação/prevenção & controle , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de Esteroides/antagonistas & inibidores , Receptores dos Hormônios Tireóideos/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 17(1): e0262360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030229

RESUMO

Over the years Ski and Sno have been found to be involved in cancer progression e.g. in oesophageal squamous cell carcinoma, melanoma, oestrogen receptor-positive breast carcinoma, colorectal carcinoma, and leukaemia. Often, their prooncogenic features have been linked to their ability of inhibiting the anti-proliferative action of TGF-ß signalling. Recently, not only pro-oncogenic but also anti-oncogenic functions of Ski/Sno proteins have been revealed. Besides Ski and Sno, which are ubiquitously expressed other members of Ski/Sno proteins exist which show highly specific neuronal expression, the SKI Family Transcriptional Corepressors (Skor). Among others Skor1 and Skor2 are involved in the development of Purkinje neurons and a mutation of Skor1 has been found to be associated with restless legs syndrome. But neither Skor1 nor Skor2 have been reported to be involved in cancer progression. Using overexpression studies in the Drosophila eye imaginal disc, we analysed if the Drosophila Skor homologue Fuss has retained the potential to inhibit differentiation and induce increased proliferation. Fuss expressed in cells posterior to the morphogenetic furrow, impairs photoreceptor axon pathfinding and inhibits differentiation of accessory cells. However, if its expression is induced prior to eye differentiation, Fuss might inhibit the differentiating function of Dpp signalling and might maintain proliferative action of Wg signalling, which is reminiscent of the Ski/Sno protein function in cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Discos Imaginais/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Aciltransferases/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Sci Rep ; 12(1): 722, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031635

RESUMO

Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.


Assuntos
Comunicação Celular/genética , Comunicação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Cílios/genética , Cílios/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Epitélio Pigmentado da Retina/citologia , Actinas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Humanos , Microscopia de Interferência , Modelos Genéticos , Podossomos/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Vinculina/metabolismo
14.
Fish Physiol Biochem ; 48(1): 173-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039994

RESUMO

As a tightly controlled biological process, cardiogenesis requires the specification and migration of a suite of cell types to form a particular three-dimensional configuration of the heart. Many genetic factors are involved in the formation and maturation of the heart, and any genetic mutations may result in severe cardiac failures. The neuron navigator (NAV) family consists of three vertebrate homologs (NAV1, NAV2, and NAV3) of the neural guidance molecule uncoordinated-53 (UNC-53) in Caenorhabditis elegans. Although they are recognized as neural regulators, their expressions are also detected in many organs, including the heart, kidney, and liver. However, the functions of NAVs, regardless of neural guidance, remain largely unexplored. In our study, we found that nav3 gene was expressed in the cardiac region of zebrafish embryos from 24 to 48 h post-fertilization (hpf) by means of in situ hybridization (ISH) assay. A CRISPR/Cas9-based genome editing method was utilized to delete the nav3 gene in zebrafish and loss of function of Nav3 resulted in a severe deficiency in its cardiac morphology and structure. The similar phenotypic defects of the knockout mutants could recur by nav3 morpholino injection and be rescued by nav3 mRNA injection. Dual-color fluorescence imaging of ventricle and atrium markers further confirmed the disruption of the heart development in nav3-deleted mutants. Although the heart rate was not affected by the deletion of nav3, the heartbeat intensity was decreased in the mutants. All these findings indicate that Nav3 was required for cardiogenesis in developing zebrafish embryos.


Assuntos
Coração/crescimento & desenvolvimento , Proteínas do Tecido Nervoso , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
15.
Pediatr Neurol ; 126: 65-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740135

RESUMO

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Assuntos
Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/genética , Semaforinas/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Estudos de Associação Genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transdução de Sinais/fisiologia , Adulto Jovem
16.
Cancer Med ; 11(1): 207-223, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799992

RESUMO

BACKGROUND: Dcf1 has been demonstrated to play vital roles in many CNS diseases, it also has a destructive role on cell mitochondria in glioma cells and promotes the autophagy. Hitherto, it is unclear whether the viability of glioblastoma cells is affected by Dcf1, in particular Dcf1 possesses broad localization on different organelles, and the organelles interaction frequently implicated in cancer cells survival. METHODS: Surgically excised WHO grade IV human glioblastoma tissues were collected and cells isolated for culturing. RT-PCR and DNA sequencing assay to estimate the abundance and mutation of Dcf1. iTRAQ sequencing and bioinformatic analysis were performed. Subsequently, immunoprecipitation assay to evaluate the degradation of HistoneH2A isomers by UBA52 ubiquitylation. Transmission electron microscopy (TEM) was applied to observe the structure change of mitochondria and autophagosome. Organelle isolated assay to determine the distribution of protein. Cell cycle and apoptosis were evaluated by flow cytometric assays. RESULTS: Dcf1 was downregulated in WHO grade IV tumor without mutation, and overexpression of Dcf1 was found to significantly regulate glioblastoma cells. One hundred and seventy-six differentially expressed proteins were identified by iTRAQ sequencing. Furthermore, we confirmed that overexpression of Dcf1 destabilized the structure of the nucleosome via UBA52 ubiquitination to downregulate HistoneH2A.X but not macroH2A or HistoneH2A.Z, decreased the mitochondrial DNA copy number and inhibited the mitochondrial biogenesis, thus causing mitochondrial destruction and dysfunction in order to supply cellular energy and induce mitophagy preferentially but not apoptosis. Dcf1 also has disrupted the integrity of lysosomes to block autolysosome degradation and autophagy and to increase the release of Cathepsin B and D from lysosomes into cytosol. These proteins cleaved and activated BID to induce glioblastoma cells apoptosis. CONCLUSIONS: In this study, we demonstrated that unmutated Dcf1 expression is negatively related to the malignancy of glioblastoma, Dcf1 overexpression causes nucleosomes destabilization, mitochondria destruction and dysfunction to induce mitophagy preferentially, and block autophagy by impairing lysosomes to induce apoptosis in glioblastoma.


Assuntos
Apoptose , Autofagia , Glioblastoma/genética , Glioblastoma/patologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Humanos , Lisossomos/patologia , Proteínas de Membrana/fisiologia , Mitocôndrias/patologia , Mitofagia , Proteínas do Tecido Nervoso/fisiologia , Nucleossomos/patologia , Biogênese de Organelas
17.
Kaohsiung J Med Sci ; 38(2): 129-138, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741399

RESUMO

Increased abnormal spindle-like microcephaly (ASPM) expression has been linked to clinical stage and poor prognosis in cancers, but the molecular mechanisms by which ASPM promotes cell metastasis in colorectal cancer (CRC) has not been identified. This study showed that the abilities of cell migration, invasion, and epithelial-mesenchymal transition (EMT) were attenuated in ASPM-deficient CRC cell lines. Furthermore, we reported that attenuation of ASPM expression inhibited CRC cell metastasis in vivo. Additionally, the expression of ASPM was positively correlated with ß-catenin level in CRC tissues. Mechanistically, ASPM can upregulate ß-catenin transcription by stimulating the ß-catenin promoter and enhancing the nuclear translocation of ß-catenin in CRC cells, which leads to the activation of the Wnt/ß-catenin pathway. Finally, we showed that ASPM effectively induced CRC cell migration and invasion in a ß-catenin-dependent manner.


Assuntos
Movimento Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Tecido Nervoso/fisiologia , beta Catenina/biossíntese , Núcleo Celular , Humanos , Invasividade Neoplásica , Transporte Proteico , Células Tumorais Cultivadas
18.
Cell Rep ; 37(11): 110107, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34910912

RESUMO

What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas ADAM/fisiologia , Encéfalo/metabolismo , Epilepsia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas do Tecido Nervoso/fisiologia , Proteínas 14-3-3/genética , Animais , Encéfalo/patologia , Epilepsia/metabolismo , Epilepsia/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Sci Rep ; 11(1): 22745, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815492

RESUMO

Although Krüppel-associated box domain-containing zinc-finger proteins (K-ZNFs) may be associated with sophisticated gene regulation in higher organisms, the physiological functions of most K-ZNFs remain unknown. The Zfp212 protein was highly conserved in mammals and abundant in the brain; it was mainly expressed in the cerebellum (Cb). Zfp212 (mouse homolog of human ZNF212) knockout (Zfp212-KO) mice showed a reduction in survival rate compared to wild-type mice after 20 months of age. GABAergic Purkinje cell degeneration in the Cb and aberrant locomotion were observed in adult Zfp212-KO mice. To identify genes related to the ataxia-like phenotype of Zfp212-KO mice, 39 ataxia-associated genes in the Cb were monitored. Substantial alterations in the expression of ataxin 10, protein phosphatase 2 regulatory subunit beta, protein kinase C gamma, and phospholipase D3 (Pld3) were observed. Among them, Pld3 alone was tightly regulated by Flag-tagged ZNF212 overexpression or Zfp212 knockdown in the HT22 cell line. The Cyclic Amplification and Selection of Targets assay identified the TATTTC sequence as a recognition motif of ZNF212, and these motifs occurred in both human and mouse PLD3 gene promoters. Adeno-associated virus-mediated introduction of human ZNF212 into the Cb of 3-week-old Zfp212-KO mice prevented Purkinje cell death and motor behavioral deficits. We confirmed the reduction of Zfp212 and Pld3 in the Cb of an alcohol-induced cerebellar degeneration mouse model, suggesting that the ZNF212-PLD3 relationship is important for Purkinje cell survival.


Assuntos
Ataxia/patologia , Proteínas de Ligação a DNA/metabolismo , Transtornos Neurológicos da Marcha/patologia , Proteínas do Tecido Nervoso/fisiologia , Fosfolipase D/antagonistas & inibidores , Células de Purkinje/patologia , Animais , Ataxia/etiologia , Proteínas de Ligação a DNA/administração & dosagem , Proteínas de Ligação a DNA/genética , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
20.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768801

RESUMO

The mechanisms committed in the activation and response of vascular and inflammatory immune cells play a major role in tissue remodeling in cardiovascular diseases (CVDs) such as atherosclerosis, pulmonary arterial hypertension, and abdominal aortic aneurysm. Cardiovascular remodeling entails interrelated cellular processes (proliferation, survival/apoptosis, inflammation, extracellular matrix (ECM) synthesis/degradation, redox homeostasis, etc.) coordinately regulated by a reduced number of transcription factors. Nuclear receptors of the subfamily 4 group A (NR4A) have recently emerged as key master genes in multiple cellular processes and vital functions of different organs, and have been involved in a variety of high-incidence human pathologies including atherosclerosis and other CVDs. This paper reviews the major findings involving NR4A3 (Neuron-derived Orphan Receptor 1, NOR-1) in the cardiovascular remodeling operating in these diseases.


Assuntos
Doenças Cardiovasculares/patologia , Sistema Cardiovascular/patologia , Proteínas de Ligação a DNA/metabolismo , Inflamação , Proteínas do Tecido Nervoso/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Animais , Aterosclerose , Remodelamento Atrial , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Proteínas de Ligação a DNA/fisiologia , Humanos , Proteínas do Tecido Nervoso/fisiologia , Hipertensão Arterial Pulmonar , Receptores de Esteroides/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...